
1. Introduction

The present study was motivated by a problem
encountered by an aircraft logistics center that houses a
number of facilities (hangars), each of which contains
multiple work stations (bays). The center offers its cus-
tomers a wide variety of aircraft maintenance services
(jobs), including structural repairs, passenger/freight
conversions, and engine changes. In this paper we con-
centrate on a single hangar which is equipped with sev-
eral bays.

It is assumed that the company has contractual obli-
gations for a number of existing jobs, which have to be
completed in the hangar. These existing jobs are char-
acterized by their specified starting times, bay assign-
ments, and job durations (spans). Thus, a given bay will
be idle during the time periods between existing jobs.
We are interested in how best to schedule a number of
new jobs into these vacant spaces. Specifically, the

company wishes to construct a manufacturing schedule
that can be flexible in accommodating future incoming
jobs.

First we present a mixed integer quadratic program-
ming (MIQP) approach to model this scheduling prob-
lem. Solution of this MIQP gives a schedule that opti-
mizes the overall facility utilization, while providing
increased flexibility to accommodate future jobs. Next
we develop local optimality conditions for the common
types of changes that can occur to a particular schedule
(job switches). These conditions enable us to better
understand optimal solutions and also to conduct sensi-
tivity analyses.

The exact MIQP formulation of the scheduling prob-
lem has mn binary variables, where m denotes the num-
ber of vacant spaces and n denotes the number of new
jobs. Since there are 2mn possible choices for the binary
variables, exact solution of our MIQP model is possible
only for very small problems. Consequently we devel-
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op a heuristic procedure by considering the vacant
spaces as bins with varying capacities and applying
some modified bin packing techniques. We can also
incorporate the local optimality conditions to improve
this basic heuristic approach.

2. Optimization Model

First we consider a very simplified scenario in order
to motivate our optimization model. Suppose there is
only one bay and, relative to the jobs already scheduled
for that bay, there are three vacant spaces (bins) B1, B2,
B3 of lengths (capacities) 8 d, 12 d, 15 d. Also suppose
that three new jobs J1, J2, J3 with spans of 6 d, 7 d, 10 d
are to be assigned to the bay. Several ways of assigning
the three new jobs to the three bins are depicted in Fig.
1. Intuitively, it seems that assignment A3 is the most
desirable of the three, because it provides the largest
contiguous space remaining in a bin (9 d) after assign-
ing the three jobs. For example, by adopting assign-
ment A3, the center is capable of handling a future job
that requires a span of 9 d or handling two additional
jobs with spans of 6 d and 3 d, whereas the other two
assignments cannot. Here we observe that creating a
large amount of space in a bin (or in a few bins) after
assigning the jobs is generally preferred over small
amounts of space that are scattered over many bins.

To be more precise, let us define the residual capac-
ity of a bin as the capacity that remains after assigning
a job (or jobs) to that particular bin. Since the sum of
the residuals is fixed (in this example totaling 12) for
all assignments, we consider the sum of squared resid-
uals for these assignments. Assignment A1 has residual
capacities 8, 2, 2 with sum of squares 64 + 4 + 4 = 72;
similarly, A2 has residual capacities 2, 5, 5 with sum of
squares 54, while A3 has residual capacities 1, 2, 9 with
sum of squares 86. We observe that assignment A3 has
the largest sum of squares, as a result of the contribu-

tion from the highest residual capacity term. In general,
we argue that an assignment with the largest sum of
squares should be preferred because it leaves a higher
residual capacity in a bin (or bins) instead of smaller
residual capacities that are scattered over several bins.
In turn this gives added flexibility to the company in
accommodating future incoming jobs. We are thus
motivated to use the maximization of the sum of
squared residuals as our objective criterion. Since the
sum of the residuals is fixed, we are equivalently max-
imizing the variance of the residuals.

2.1 Formulation

To formulate this problem, suppose that n new jobs
are to be scheduled using m existing bins, with ck being
the capacity of bin Bk. Also suppose that job Ji has span
si. Define the binary variable xik = 1 if job Ji is assigned
to bin Bk, and xik = 0 otherwise. Also let zk denote the
residual capacity of bin Bk. Then our optimization
model for the scheduling problem has the form:

The above optimization model has m + n equality
constraints involving mn binary variables and m contin-
uous variables. The first m equality constraints define
the residual capacity variables zk; the nonnegativity of
zk ensures that the set of jobs assigned to bin Bk should
not exceed that bin’s capacity ck. The remaining n
equality constraints require that each job should be
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Fig. 1. Assignments A1, A2, A3.
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assigned to exactly one bin. Since we are optimizing a
quadratic objective function over the (linear) constraint
set, this model can be classified as a mixed integer
quadratic programming (MIQP) problem. Since the
objective function is a sum of squares, this problem is
a type of convex maximization problem, a very difficult
type of mixed integer optimization problem.

Thus far we have not considered the starting time tk

associated with each bin. We can easily incorporate
such starting times into our MIQP model by simply
modifying the objective function:

(1)

where β is a nonnegative valued parameter. When β =
0, we recover our original model in which maximizing
the sum of squared residuals (“good fit”) is the sole cri-
terion. However, by increasing the value of β, we
emphasize the contribution of the starting time and thus
encourage new jobs to be assigned earlier in time. The
parameter β can be interpreted as the increased impor-
tance that the decision maker would like to give to ear-
lier completion of jobs. It is not hard to verify that z(β)
is a piecewise quadratic, increasing convex function of
β.

The above model can be easily applied to situations
in which there are multiple bays within a hangar.
Indeed for the purposes of the optimization model
MIQP, it is only necessary to maintain a list of bins with
their capacities and starting times, without regard to the
particular bay associated with each bin. In the multiple
bay context, the parameter β can still be interpreted as
the relative importance of a good fit versus an assign-
ment of jobs to bins occurring earlier in time.

2.2 Examples

In order to get some insights into the proposed MIQP
model we present two numerical examples. We have
used the global optimization package LINGO [4] to

solve these MIQP problems exactly. Example 1
involves m = 5 bins and two bays: the first three bins B1,
B2, B3 are associated with bay 1 and the other two bins
B4, B5 with bay 2. Capacities and starting times for
these bins are given in Table 1. Four new jobs J1, J2, J3,
J4 are to be assigned; these jobs have the span times si

given in Table 2. Using LINGO we obtained the exact
solution of the MIQP model for various values of β. It
turned out that there were only three sets of optimal
solutions as the parameter β was varied. For 0 ≤ β ≤
0.11, the optimal assignment A1 allocates jobs J1, J2, J3,
J4 to bins B2, B4, B3, B1 respectively. A schematic illus-
tration of assignment A1 is given in Fig. 2.

Table 1. Bin capacities and starting times for Example 1

bin Bk
k 1 2 3 4 5

ck 10 12 10 14 16
tk 6 22 43 4 28

Table 2. Span times of new jobs for Example 1

job Ji
i 1 2 3 4

si 12 11 9 10

For the range 0.11 ≤ β ≤ 0.4, the optimal assignment
A2 allocates jobs J1, J2, J3, J4 to bins B4, B2, B3, B1

respectively. Thus the only modification that occurs to
the optimal job schedule, in changing from assignment
A1 to assignment A2, is that jobs J1, J2 interchange posi-
tions between bins B2, B4. Over the final range 0.4 ≤ β
< ∞, the optimal assignment A3 allocates jobs J1, J2, J3,
J4 to bins B4, B2, B5, B1 respectively. The only difference
between assignment A2 and assignment A3 is the move-
ment of job J3 from bin B3 to bin B5. This behavior is
consistent with our earlier observation that increasing β
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Fig. 2. Assignment A1, optimal for 0 ≤ β ≤ 0.11.
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favors moving jobs to bins that occur earlier in time: B5

has a starting time of 28, earlier than the starting time
43 for B3.

Example 2 involves m = 9 bins and three bays, each
containing three bins. We are interested in assigning
five new job J1, ...., J5 to these bins. The data for this
problem are given in Tables 3 and 4. Here we also
investigated the changes in optimal solutions as the
parameter β is varied. For this problem, there were
eight sets of optimal solutions as the parameter β was
varied over the ranges: [0, 0.004], [0.004, 0.033],
[0.033, 0.05], [0.05, 0.079], [0.079, 0.15], [0.15, 1],
[1, 3], [3, ∞]. As one illustration, Fig. 3 presents the
optimal solution A4 over the first of these ranges. In
assignment A4, jobs J1, J4, J5 are assigned to bins B3, B4,
B5 whereas jobs J2, J3 are assigned to bin B9.

Table 3. Bin capacities and starting times for Example 2

bin Bk
k 1 2 3 4 5 6 7 8 9

ck 17 20 13 14 16 18 15 19 21
tk 5 32 63 4 25 52 3 24 51

Table 4. Span times of new jobs for Example 2

job Ji
i 1 2 3 4 5

si 12 11 10 14 16

3. Local Optimality Conditions

In the previous section, we observed several trans-
formations that occurred in changing from one optimal
schedule to another optimal schedule. Specifically, in
changing from A2 to A3, a job (J3) moves from one bin
to another bin, a transformation we call a move. In
changing from A1 to A2, two jobs (J1, J2) interchange
positions between two bins, termed a swap. In addition,
another simple transformation involves transferring
jobs from several bins to a common bin (grouping) or
vice versa (ungrouping). Collectively we call these
types of changes, and combinations thereof, job switch-
es. In this section we will first study the individual
effects of each type of job switch upon a given assign-
ment. This enables us to develop local optimality con-
ditions for these types of job switches, relative to a
given assignment. Using these local optimality condi-
tions, it is possible to identify job switches that can
improve a given feasible solution. Moreover, these
local optimality conditions can aid us in carrying out a
sensitivity analysis with respect to the parameter β.

3.1 Move

Consider the two assignments A and B shown in Fig.
4. In assignment A, job Ji is currently assigned to bin Bu,
whereas in assignment B, job Ji has been moved to bin
Bv. Otherwise the two assignments are identical. The
starting times of bins Bu and Bv are tu and tv respective-
ly, and the span time of job Ji is si. Define au (resp. av)
as the capacity utilized by the other jobs that are
already assigned to Bu (resp. Bv), and ru (resp. rv) as the
remaining capacity of bin Bu (resp. Bv) before the
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Fig. 3. Assignment A4, optimal for 0 ≤ β ≤ 0.004.



assignment of job Ji. The residual capacities of bins Bu

and Bv in assignment A are defined as zu and zv respec-
tively, whereas the corresponding residual capacities of
bins Bu and Bv in assignment B are defined as z′u and z′v.
Thus zu = ru – si, zv = rv, z′u = ru, z′v = rv – si.

Let ZA, ZB denote the objective function values in Eq.
(1) for assignments A, B. Since the only difference
between the two assignments is the movement of job Ji

from bin Bu to bin Bv, we can ignore the other contribu-
tions in the objective function values ZA and ZB, writing

ZA = (zu + βtu)2 + (zv + βtv)2 = (ru – si + βtu)2 + (rv + βtv)2

ZB = (z′u + βtu)2 + (z′v + βtv)2 = (ru + βtu)2 + (rv – si + βtv)2

If we define yu = ru + βtu, yv = rv + βtv, then the above
expressions simplify to

ZA = (yu – si)2 + y2
v, ZB = y2

u + (yv – si)2.

Consequently ∆Z = ZA – ZB = 2(yv – yu)si is the change
in objective function (1). Assignment A will be locally
optimal with respect to the move in Fig. 4 if and only if
∆Z ≥ 0; since si > 0 this is equivalent to yv – yu ≥ 0.
However, if yv – yu < 0 then it is beneficial to move job
Ji from bin Bu to bin Bv, assuming this move is feasible.

It will be convenient to use an alternative representa-
tion to depict the move shown in Fig. 4. Namely, we
denote the bins Bu and Bv by vertices u and v, and we
use a directed edge i to denote the movement of job Ji

from bin Bu to bin Bv. This is depicted in Fig. 5.

To illustrate how this local optimality condition can
be applied, consider Example 1 and assignment A2,
which allocates jobs J1, J2, J3, J4 to bins B4, B2, B3, B1.
The only feasible moves involve transferring a job from
one of the bins B1,..., B4 to bin B5. For example, assign-
ment A2 remains locally optimal for moving job J3 from
bin B3 to B5 if and only if 0 ≤ y5 – y3 = (16 + 28β) –
(10 + 43β) = 6 – 15β, so that β ≤ 0.4. The other condi-
tions 0 ≤ y5 – y1, 0 ≤ y5 – y2, 0 ≤ y5 – y4 hold automati-
cally since β ≥ 0. The result is that assignment A2 is
locally optimal under moves for all β ≤ 0.4, consistent
with the results obtained earlier from LINGO.

3.2 Swap

We now consider the swapping of jobs, relative to
two assignments A and B. In assignment A, jobs Ji and
Jk are assigned to bins Bu and Bv respectively, whereas
in assignment B, jobs Ji and Jk are assigned to bins Bv

and Bu. Therefore the only difference between the two
assignments is that jobs Ji and Jk are swapped between
bins Bu and Bv. This is illustrated in Fig. 6. Again define
au (resp. av) as the capacity utilized by the other jobs
that are assigned to Bu (resp. Bv), and ru (resp. rv) as the
remaining capacity of bin Bu (resp. Bv) before the
assignment of jobs Ji and Jk. The residual capacities of
bins Bu and Bv in assignment A are defined as zu and zv

respectively, whereas the corresponding residual capac-
ities of bins Bu and Bv in assignment B are defined as z′u
and z′v. Thus zu = ru – si, zv = rv – sk, z′u = ru – sk, z′v = rv –
si.

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

107

Fig. 5. Graphical representation of a move.

Fig. 6. A swap of jobs Ji and Jk.
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Fig. 4. Job Ji moves from bin Bu to bin Bv.



As before, let ZA, ZB be the objective function values
for assignments A, B. Since the only difference between
the two assignments is the swapping of jobs Ji and Jk

between bins Bu and Bv, we can ignore the other contri-
butions in the objective function values ZA and ZB, writ-
ing

ZA = (zu + βtu)2 + (zv + βtv)2 = (ru – si + βtu)2

+ (rv – sk + βtv)2 = (yu – si)2 + (yv – sk)2

ZB = (z′u + βtu)2 + (z′v + βtv)2 = (ru – sk + βtu)2

+ (rv – si + βtv)2 = (yu – sk)2 + (yv – si)2

Therefore ∆Z = ZA – ZB = 2(yv – yu)si + 2(yu – yv)sk =
2(yv – yu)(si – sk) and assignment A is locally optimal
with respect to the indicated swap if and only if ∆Z ≥ 0.
Otherwise it is beneficial to swap jobs Ji and Jk, assum-
ing that such a swap is feasible.

By way of illustration, consider assignment A1 of
Example 1, shown in Fig. 2. The only feasible swaps
involve exchanging jobs J1 and J2 or exchanging jobs J3

and J4. Assignment A1 remains locally optimal for
swapping job J1 in bin B2 with job J2 in B4 if and only if
(y4 – y2)(s1 – s2) ≥ 0. Simplifying produces 0 ≤ [(14 +
4β) – (12 + 22β)](12 – 11) = 2 – 18β or β ≤ .
Swapping jobs J3 and J4 between bins B3 and B1 impos-
es the condition (y3 – y1)(s4 – s3) ≥ 0 which simplifies to
37β ≥ 0, which clearly holds for β ≥ 0. In summary,
assignment A1 is locally optimal for swaps over the
range 0 ≤ β ≤ , consistent with the results obtained ear-
lier from LINGO.

3.3 Grouping and Ungrouping

Another simple job switch involves the grouping of
jobs, in which p jobs are moved from separate bins to a
new bin. Specifically, suppose that in assignment A,
jobs J1, ..., Jp are assigned to bins Bu1

, ..., Bup
, whereas in

assignment B, they are all grouped together in the sin-
gle bin Bv. This transformation is illustrated in Fig. 7.
Here we can define the utilized capacity of all bins after
the assignment of jobs other than J1, ..., Jp, as well as
the residual capacities of bins Bu1

, ..., Bup
, in a manner

similar to that done previously.

The associated objective function values for these
assignments are given by

Simplification then produces

An analogous development produces the following
expression when p jobs J1, ..., Jp are moved from a sin-
gle bin Bu to p separate bins Bv1

, ..., Bvp
:

Notice the change in sign in the last summation from
negative to positive for the ungrouping ∆Z, compared
with the grouping ∆Z.

To illustrate the ungrouping of jobs, consider assign-
ment A4 in Example 2, shown in Fig. 3. Suppose that
jobs J2, J3 are moved from bin B9 to bins B7, B1 respec-
tively. (This is a feasible ungrouping of jobs.) Then

∆Z = 2[(y7 – y9)s2 + (y1 – y9)s3 + s2s3]

= 2([(15 + 3β) – (21 + 51β)]11 + [(17 + 5β)

– (21 + 51β)]10 + 11 · 10) = 2(4 – 988β).
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Consequently, the proposed ungrouping will be advan-
tageous when ∆Z < 0 or β > .

3.4 More Complex Job Switches

This section considers combining the previous trans-
formations (moves, swaps, groupings, and ungroup-
ings) into more complex job switches. To motivate the
general case, we first consider an example involving
eight jobs and five bins. Namely, the transformations
that occur, in changing from the current assignment A
to the new assignment B are as follows: jobs J1, J5 swap
between bins Ba, Bc; jobs J2, J3 ungroup from bin Ba to
bins Bd, Be; job J4 moves from Bb to Bc while job J6

moves from Bd to Bb; and jobs J7, J8 ungroup from Be to
Bb, Bc. See Fig. 8 for a graphical representation of this
more complex rearrangement. Following the previous
development, we obtain

ZA = (ya – s1 – s2 – s3)2 + (yb – s4)2 + (yc – s5)2 + (yd – s6)2

+ (ye – s7 – s8)2

ZB = (ya – s5)2 + (yb – s6 – s7)2 + (yc – s1 – s4 – s8)2

+ (yd – s2)2 + (ye – s3)2

∆Z = 2[(yc – ya)s1 + (yd – ya)s2 + (ye – ya)s3 + (yc – yb)s4

+ (ya – yc)s5 + (yb – yd)s6 + (yb – ye)s7 + (yc – ye)s8 + s1s2

+ s2s3 + s1s3 + s7s8 – s1s4 – s4s8 – s1s8 – s6s7].

Notice that for each directed edge (i, j) representing
the movement of job Jk in Fig. 8 there is a term 2(yj –
yi)sk in ∆Z. There are also terms in ∆Z to represent the
ungrouping and grouping of jobs. Jobs J1, J2, J3

ungroup at vertex a, giving rise to the product terms
s1s2 + s2s3 + s1s3; likewise the ungrouping of jobs J7, J8

at vertex e gives the term s7s8. On the other hand, jobs

J1, J4, J8 group at vertex c, producing the (negative)
term –(s1s4 + s4s8 + s1s8), while jobs J6, J7 group at ver-
tex b, giving –s6s7.

In general suppose that the directed graph G = (V, E)
represents the specified changes to a current assign-
ment, where the set V of vertices represents the bins and
the set E of directed edges represents the movement of
jobs between bins. Denote the span time of the job
associated with edge (i, j) by sij. Also let Γ+(i) denote
the set of edges leaving vertex i and let Γ–(i) denote the
set of edges entering vertex i. Then the expression for
∆Z becomes

4. Heuristic Procedures

In Sec. 2.1, we modeled the scheduling problem as
an MIQP with mn binary variables and m continuous
variables, where m is the number of bins and n is the
number of new jobs. Since the number of possible
choices 2mn for the binary variables rapidly becomes
large, even for small m and n, the exact mathematical
solution of the MIQP model is very time consuming.
Therefore we consider heuristic solution approaches in
this section, rather than exact procedures.

As noted earlier the vacant time interval between any
two existing jobs can be considered a bin. Since the
intervals between existing jobs are of different length,
the corresponding bins have variable size. The underly-
ing problem is then to assign the new jobs to these bins
in such a way that the set of new jobs assigned to a bin
fits within that bin’s capacity; this is to be done in an
“optimal” fashion. Thus our scheduling problem can be
viewed as a variable-sized bin packing problem [3,5]
with an unusual type of objective function. In this sec-
tion we will first develop a simple heuristic procedure
based on existing bin packing techniques. Next we will
apply the local optimality conditions developed in Sec.
3 to improve this bin packing heuristic.

4.1 Bin Packing Heuristic

We begin by reviewing two bin packing algorithms
that are well known in the literature [2]. They are the
First Fit (FF) algorithm and the Best Fit (BF) algo-
rithm. The objective of such standard bin packing algo-
rithms is to minimize the number of bins that are need-
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Fig. 8. Graphical representation of a more complicated scenario.

( , )

2 ( ) { : , ( ), }

{ : , ( ), }.

j i ij a b
i j E i V

a b
i V

Z y y s s s a b i a b

s s a b i a b

+

∈ ∈

−

∈

∆ = − + ∈Γ ≠

− ∈Γ ≠

∑ ∑∑

∑∑

1
247



ed to pack a given set of items. The FF algorithm
assigns the next job into the lowest indexed bin into
which it will fit. If the next job does not fit into any
existing bin then we open a new bin and place the next
job in the new bin. The BF algorithm is similar to the
FF algorithm, except that it assigns the next job into
that bin which will leave the smallest residual capacity
after the assignment.

In our heuristic algorithm we first order the jobs in
order of nonincreasing span times. There is an intuitive
appeal to ordering the span times in this manner: we
assign the jobs with higher span times first and hope
that we can accommodate the jobs with smaller span
times using the spaces that remain. A similar strategy is
adopted in existing bin packing algorithms [1,6].
Before assigning the next job (in order of nonincreas-
ing span) to a bin, we first identify the bins into which
the job can fit. Among these candidate bins, we select a
bin, say bin Bu, having the minimum value of zu + βtu.
As shown in the proposition below, this procedure
enables us to (locally) improve the current solution as
much as possible at the next step. Next we assign the
new job to the selected bin and update the residual
capacity of that bin. We follow this procedure until all
jobs have been assigned. We now summarize more for-
mally the steps of this heuristic algorithm.

bin_packing
1. Order the jobs by nonincreasing span time.
2. For the next job Jk in order, with span sk, con-

sider only those bins with residual capacity at
least sk. Among such bins, select bin Bu to
minimize zu + βtu.

3. Assign job Jk to bin Bu and update zu ← zu –
sk.

4. If there are additional jobs to be processed,
go to Step 2.

Here β ≥ 0 is the same parameter introduced in Sec.
2.1. When β = 0 we assign the next job Jk into a bin
(into which it fits) having the minimum current residual
capacity. Since this will also leave the smallest residual
capacity after the assignment, our heuristic algorithm is
similar to the BF algorithm for β = 0. When β is large,
we assign jobs to bins in order of increasing starting
time. In other words, jobs are assigned to bins that
occur earliest in time. This is analogous to assigning a
job to the lowest indexed bin into which it will fit, when
bins are ordered by starting times. So when β is large,
our heuristic algorithm behaves similar to the FF algo-
rithm. In this way we have blended both BF and FF into
our particular bin packing heuristic. We now demon-

strate that our heuristic performs the locally “best”
assignment for the current job at each step of the algo-
rithm.

Proposition. The bin packing heuristic locally
improves the objective function by as much as possible
at the next step.
Proof. Suppose that job Jk with span sk is to be
assigned and that bins B1, ..., Bp are the bins into which
Jk can fit. Let z1, ..., zp be the current residual capacities
of these bins. Select bin Bu such that

zu + βtu = min{z1 + βt1, ..., zp + βtp}. (2)

Let Zj be the objective function value (1) obtained by
assigning job Jk to bin Bj at the next step. We claim that
Zu ≥ Zj for all 1 ≤ j ≤ p. Let α denote the contribution to
the objective function from all bins other than Bu and Bj

in the current assignment. Thus

Zu = α + (zu – sk + βtu)2 + (zj + βtj)2

Zj = α + (zu + βtu)2 + (zj – sk + βtj)2

giving

Zu – Zj = –2zusk – 2βtusk + 2zjsk + 2βtjsk

= 2[(zj + βtj) – (zu + βtu)]sk ≥ 0,

where the final inequality follows from Eq. (2).

We illustrate the bin packing heuristic using
Example 1 when β = 0.3. Ordering the four jobs by
nonincreasing span times places them in the sequence
J1, J2, J4, J3. To begin, job J1 can fit into bins B2, B4, B5,
which have residual capacities 12, 14, 16 and starting
times 22, 4, 28. Since min{12 + 0.3(22), 14 + 0.3(4),
16 + 0.3(28)} = 15.2 is achieved for bin B4, we assign
job J1 to bin B4 and update the residual capacity of bin
B4 to z4 = 2.

We next select (in order) job J2, which can fit into
bins B2, B5, with residual capacities 12, 16. Since
min{12 + 0.3(22), 16 + 0.3(28)} = 18.6 is achieved for
bin B2, we assign job J2 to bin B2 and update the resid-
ual capacity of bin B2 to z2 = 1. Continuing in this fash-
ion, job J4 is assigned to bin B1 and job J3 is assigned to
bin B3. Thus the heuristic assigns jobs J1, J2, J3, J4 to
bins B4, B2, B3, B1 respectively. This assignment is
identical to the optimal assignment A2 found for the
range 0.11 ≤ β ≤ 0.4. In fact for Example 1 the heuris-
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tic produces optimal assignments over all three ranges
for the parameter β.

For Example 2 the MIQP model gives eight optimal
assignments corresponding to eight ranges of the
parameter β. The assignments obtained by the heuristic
procedure are identical to the optimal assignments
obtained by the MIQP model in seven of these eight
ranges. The only difference occurs over the range
0 ≤ β ≤ 0.004 for which the optimal assignment A4 is
shown in Fig. 3; it assigns jobs J1, ..., J5 to bins B3, B9,
B9, B4, B5. By contrast, the heuristic procedure obtains
a different assignment A′4, in which J1, ..., J5 are
assigned to B3, B7, B1, B4, B5. If however we perform in
A′4 a grouping of jobs J2, J3 from bins B7, B1 to bin B9,
then the change in objective function value is

∆Z = 2[(y9 – y7)s2 + (y9 – y1)s3 – s2s3] = 2(–4 + 988β).

For 0 ≤ β < 0.004, the term in parentheses above is neg-
ative so that it is advantageous to perform this group-
ing. In other words, first applying the heuristic to obtain
A′4 and then using an improving step (grouping) does
indeed yield the optimal assignment A4 over the range.

To summarize, for Example 1 the heuristic procedure
obtained the optimal solution for all ranges. In Example
2, there was one instance in which the heuristic gave a
suboptimal solution. However in this case, a single job
switch (grouping) was sufficient to produce the optimal
solution. This encouraging success suggests a hybrid
heuristic procedure that first carries out the bin packing
algorithm, followed by local improvements using
selected job switches. In particular, it is straightforward
to check for improving moves and swaps; it is a bit
more tedious to evaluate all groupings and ungroupings
relative to a given assignment.

5. Conclusions

In this paper we have considered the scheduling of
different types of aircraft maintenance programs. In this
initial study, we concentrated on the simplified case
where there is only a single hangar. First we developed
an MIQP to model this scheduling problem. The MIQP
model incorporates a parameter β that reflects the rela-
tive importance of a good fit versus assigning of jobs to
bins occurring earlier in time. For small test problems,
it is possible to obtain an exact schedule by solving the
MIQP model. Results from these test problems indicat-
ed that there were relatively few optimal schedules over
the range of all possible values of the specified param-
eter β. We also developed local optimality conditions

for certain types of job switches, relative to a given
assignment. The local optimality conditions enable us
to improve a given feasible job schedule. Because exact
solution of the MIQP is limited to fairly small
instances, we developed a simplified heuristic proce-
dure based on existing bin packing techniques. An area
for future research is to combine the bin packing
heuristic with the intelligent application of the local
optimality conditions.
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